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1 Notation

Mathematics is a language with its own vocabulary and abbreviations. Just as you write
LOL and ROFL for common expressions so you don’t have to write out all the words,
mathematicians use abbreviations for common objects and expressions to save time. This
is especially valuable in class, both when writing on the board and taking notes, so I’ll use
these abbreviations often, and I encourage you to use them in your own presentations and
notes as well.

First of all numbers are very important in math, and there are standard abbreviations
for the most common types of numbers we will talk about:
N: The set of natural numbers, {1, 2, 3, . . . }. Notice that we write a set using curly brackets.
Z: The set of integers, {. . . ,−2,−1, 0, 1, 2, . . . }. The letter Z comes from the German word
Zahl, meaning number.
Q: The set of rational numbers. Here Q comes from the word quotient. Precisely this is{

m
n
: m,n ∈ Z, n ̸= 0

}
. This notation looks fancy and we’ll explain it shortly, but in English

this can be read “the set of fractions m
n
such that m and n are integers and n ̸= 0.”

R: The real numbers. These can be defined precisely but it is very tricky to do so, so I’ll just
assume you basically know what these are. They are the rational numbers plus the irrational
numbers (the latter being numbers with non-repeating decimals).
C: The complex numbers. This is {a+ bi : a, b ∈ R}, where i =

√
−1. We’ll be studying

these later in the course.
I’ve already introduced some other notation which I’ll now explain. A set is indicated

by putting curly brackets around all of the members. The sets of numbers above were all
infinite, but there are finite sets also. For example {1, 2, 3} is a set with three elements: 1,
2 and 3. If you want to put a condition on what is in the set, you use a colon, which is read
as “such that”. So {n : n ∈ Z, n ≥ 0} is read “the set of numbers n such that n is an integer
and n ≥ 0”, meaning the set {0, 1, 2, 3, . . . } which is sometimes called the “whole numbers”
(I remember this because 0 has a hole). Notice the symbol ∈, which means “in” or “is an
element of” (it kind of looks like an E).

Another abbreviation for “such that” that I often use when writing on the board is “s.t.”.
Two other common symbols are ∀, which means “for all”, and ∃ which means “exists”. So
the mathematical statement

∀x ∈ R, ∃y ∈ R s.t. x+ y = 0

is read in English as “for all real numbers x there exists a real number y such that x+y = 0”,
which is the statement that additive inverses exist.

1



Don’t let the notation scare you! Think of math as a foreign language, but a very easy
one that translates directly into English!

2 Vectors

In this class we distinguish points and vectors. A point is just a point in space. Let’s say our
space is two-dimensional to be concrete. The fancy name for two dimensional space is R2,
where R denotes the set of real numbers. This indicates that every point can be described
as a pair of real numbers, once we pick a coordinate system. The point (0, 0) is the origin
(center) of the coordinate system. The pair (3, 2) refers to the point that is 3 units to the
right and 2 units up from the origin.

A vector, on the other hand, indicates a displacement. So the vector [3, 2] means “move
3 units to the right and 2 units up”. This sounds a lot like how we just described the point
(3, 2), but notice the difference: With the point, we had to start at the origin. With a
vector, you can start anywhere. More subtly, the two represent different concepts. A point
represents a position in space, whereas a vector represents a displacement—the act of moving
from one position to another. If this seems confusing don’t feel bad—it is confusing!

We draw a vector as an arrow to graphically indicate the displacement. A vector is also
characterized completely by its length and direction, which is another good way to think
about it, but for our purposes it is better to think of it as a displacement.

A key difference between points and vectors is that you can add vectors but you can’t
add points. It isn’t at all clear geometrically what the “sum” of two points would mean. On
the other hand it’s very clear what the sum of two displacements would be. If we want to
add [3, 2] and [−4, 5] it means we should go 3 units to the right and 2 up, and then follow
that by moving 4 units to the left and 5 up. That’s the same as moving 3 units to the right
followed by 4 units to the left (a net change of 1 unit to the left), and then moving 2 units
up and then 5 units up (a net change of 7 units up). So we can add vectors by adding their
components. This is expressed simply as [3, 2] + [−4, 5] = [−1, 7].

You can also multiply a vector by a real number, which is called a scalar. This operation
is then called scalar multiplication. So 5[3, 2] means to do 5 displacements of 3 to the right
and 2 up. It’s clear that 5[3, 2] = [15, 10]. We are “scaling” the vector by 5.

One other neat thing you can do is add a vector to a point! That makes sense geomet-
rically as well. It means you start at the point, then follow a displacement, and end up at
another point. For example (3, 2) + [6,−7] = (9,−5).

We have already seen three-dimensional points and vectors as well. The space in this case
is called R3. The points give positions (x, y, z) and the vectors are now three-dimensional
displacements. For example [3, 2,−4] means go 3 in the positive x direction, 2 in the positive
y direction, and 4 in the negative z direction. Again vectors are written with arrows, and
can be added both to vectors and to points, and multiplied by scalars. It’s easy to generalize
to n-dimensional space, Rn. Think about what R1 and R0 would mean!

Note that vectors are often written in column form, like this:xy
z


but we will usually write them as row vectors [x, y, z] here to save space. As is conventional,
we use bold letters near v (such as u,v,w) to refer to vectors, and letters either near the
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beginning (like a, b, c) or end (such as x, y, z) of the alphabet to refer to scalars. On the
blackboard, vectors are written with arrows, such as v⃗.

Exercises

1. What exactly is the vector space R1? What do you think R0 should mean?

3 Vector Spaces

Let’s forget about points for the time being, and concentrate only on vectors. Let’s consider
the vectors in R2, which look like v = [a, b], where a, b ∈ R. Let w = [c, d], where c, d ∈ R,
and let e ∈ R be a scalar. Then vector addition, as we noted in the previous section, is
defined as v +w = [a, b] + [c, d] = [a + c, b + d]. Notice that it doesn’t matter which order
we add the vectors in: u+ v = v + u.

Scalar multiplication is defined as ev = e[a, b] = [ea, eb].
There is a “zero” vector 0 = [0, 0] which when added to any vector leaves the vector

unchanged. So v+ 0 = [a, b] + [0, 0] = [a, b] = v. As a displacement, 0 means don’t move at
all.

Also for any vector there is an inverse, a sort of “opposite displacement” that says go the
same distance in the opposite direction, so that the two combined give zero displacement. It’s
clear that if v = [a, b] then −v = [−a,−b] and that v+(−v) = [a, b] + [−a,−b] = [0, 0] = 0.

You can see that vectors satisfy properties similar to those for ordinary numbers that you
learned back in middle school. There is in fact a complete list of the fundamental properties
that vector addition and scalar multiplication satisfy. Compare them to the ones you know
for real numbers.

For all vectors u,v,w and all scalars a, b:

1. Associative law: (u+ v) +w = u+ (v +w).

2. Additive identity: There exists a unique vector 0 such that v + 0 = v.

3. Additive inverse: There exists a unique vector, denoted −v, such that v + (−v) = 0.

4. Commutative law: u+ v = v + u.

5. Scalar multiplication identity: 1v = v.

6. Scalar multiplication associativity: (ab)v = a(bv).

7. Distributive law (vector addition): a(u+ v) = au+ av.

8. Distributive law (scalar addition): (a+ b)v = av + bv.

Something that satisfies these properties is known as a vector space. So R2 and R3 and in
fact Rn for any n ≥ 0 is a vector space. However it turns out there are a lot of other vector
spaces around which satisfy these properties. We’re not going to study them this year, but
you’ll run across them in the not too distant future, and understand better what a powerful
concept a vector space is. For now I just want you to realize the concept exists.

Exercises

1. Show that in R2, with vector addition and scalar multiplication defined as usual, that
the vector [0, 0] is the unique additive identity.

2. Given vector [x, y] ∈ R2, what is its additive inverse? Prove that this inverse is unique.
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4 Dot Product, Length and Angle

In a vector space we can add two vectors together, and multiply a vector by a scalar, but
there is no operation to multiply two vectors together and get another vector. Indeed in R2

it’s not clear what it would even mean to “multiply” two vectors together.
It is, however, possible to define a sort of product of vectors that produces a scalar.

This is known as the dot product in Rn, and it is an example of a more general type of
product known as an inner product. We will denote the dot product with · just as the
name implies. The dot product is defined for R2 as [a, b] · [x, y] = ax + by and for R3 as
[a, b, c] · [x, y, z] = ax + by + cz (see Exeter 9:7). You should see how to generalize this to
Rn. What is the dot product for R1?

The dot product we have defined satisfies these general properties of an inner product,
which hold for all u,v,w ∈ V and a ∈ R.

1. Linearity (vector addition): (u+ v) ·w = u ·w + v ·w.

2. Linearity (scalar multiplication): a(u · v) = (au) · v.

3. Commutativity: u · v = v · u.

4. Positive definiteness: u · u > 0 whenever u ̸= 0.

You have actually already shown that the dot product satisfies some of these properties
(for R3) in Exeter 10:11, and you’ll have a chance to show the others in the exercises below.
The first two properties show that the dot product is “linear” in its first argument; we will
discuss linearity in more depth in the next section. It is also linear in the second argument
using commutativity.

The importance of the dot product, and inner product in general, is that it relates to the
geometric concepts of length and angle. Recall that the length (also called magnitude) of
vector [a, b] ∈ R2 is

√
a2 + b2 by the Pythagorean theorem. Similarly we can use two appli-

cations of the Pythagorean theorem to show that the length of [a, b, c] ∈ R3 is
√
a2 + b2 + c2,

and the obvious generalization works for Rn (it’s hard to visualize for n > 3, but with some
thought you may be able to understand it conceptually). Note that for R1 the length of [a]
is

√
a2, which is just another way to say |a|, since

√
a2 refers to the positive square root of

a2.
The length of vector v ∈ Rn is denoted |v| and by definition of both length and dot

product we have |v|2 = v ·v, or equivalently (since everything is non-negative) |v| =
√
v · v.

So dot product can be used to determine length.
More surprising is that dot product can be used to determine angle as well! In Exeter

15:3 you show that

cos θ =
u · v
|u| |v|

(1)

where θ is the angle between vectors u and v. Since we can express the lengths of u and
v using dot product, this means that cos θ is determined completely from the dot product,
and θ essentially determined as well.

The advantage of this approach is that an inner product is a more general concept than
length and angle, and it is possible to define an inner product even when it is not clear
geometrically how one would define length and angle, and then define length and angle
using the inner product.

Exercises
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1. Show that the dot product for R3 is positive definite.

2. In Exeter 10:11(d), you showed that u · (v + w) = u · v + u · w in R3. Use this to
prove the linearity (vector addition) law above, solely using three applications of the
commutative law.

3. Prove linearity (scalar multiplication) for R3.

4. Exeter 15:3.

5. Exeter 14:10.

6. Exeter 15:6.

7. Exeter 17:6.

8. Exeter 16:9.

9. Exeter 18:3.

10. Given cos θ what are the possible values of θ? In Rn is it possible geometrically to
narrow down the choice to one? What would this imply about defining an inverse to
cosine (called cos−1 or arccos)?

11. What are the minimum and maximum values of cos θ? Notice that this implies we had
better have

|u · v| ≤ |u| · |v|

if Equation 1 is going to make sense. (Notice that the absolute value on the left is
normal absolute value, not length, and the dot on the right refers to normal multipli-
cation, not dot product!) Fortunately this is true for any inner product that satisfies
the properties given above, and is the famous Cauchy-Schwarz Inequality. Prove this
for R2 using the dot product.

12. Exeter 18:10.

13. Exeter 19:9.

14. Exeter 20:4.

15. Exeter 21:7.

16. Let v1,v2,v3,v4 be four vectors all with length 1 and with angle (with respect to
the postive x-axis) of 0, π/2, π, 3π/2 radians respectively. (Recall 2π radians is 360
degrees.) What is v1 + v2 + v3 + v4? What is v2 + v3 + v4?

17. Let v1,v2,v3,v4,v5,v6 be six vectors all with length 1 and with angle (with respect
to the postive x-axis) of 0, π/3, 2π/3, π, 4π/3, 5π/3, radians respectively. What is v1 +
v2 + v3 + v4 + v5 + v6? What is v2 + v3 + v4 + v5 + v6?

18. Let v1,v2,v3,v4,v5 be five vectors all with length 1 and with angle (with respect to
the postive x-axis) of 0, 2π/5, 4π/5, 6π/5, 8π/5, radians respectively. What is v1+v2+
v3 + v4 + v5? What is v2 + v3 + v4 + v5?
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5 Linear Transformations

We have seen transformations appear in several exercises so far (for example 6:6, 7:1, 7:11,
9:1) and for those who used the Exeter Mathematics 2 book last year you should already be
very familiar with transformations. The Mathematics 2 reference section defines a transfor-
mation to be “a function that maps points to points.” So far they’ve assumed these points
to be in R2, and so the transformation looks something like T (x, y) = (x′, y′), where (x′, y′)
is the image, or result, of transforming point (x, y).

We now come to something confusing. Tranformations map points to points, but we are
now going to think of the points as vectors! This allows us to use all of the operations and
properties of vector spaces we have developed. We can think of the points as vectors by
going back to the idea that a point is just a “displacement” from the origin. So (3, 2) as a
point means go over 3 and up 2 from the origin, and we think of it as the vector [3, 2] which
is forced to have its tail at the origin, and its head at (3, 2). Now we are allowed to “add”
two points by thinking of them as vectors, but the resulting “point” must be a vector whose
tail is at the origin. So we think of (3, 2) and (−4, 5) as vectors [3, 2] and [−4, 5], and when
we add them we get the vector [−1, 7], which we think of having its tail at (0, 0) and head
at (−1, 7), and so it corresponds to the point (−1, 7).

In this way we get something called a “one-to-one correspondence” between points and
vectors: for every point there is a vector, and for every vector there is a point. The corre-
spondence should be clear: the point (x, y) corresponds to the vector [x, y], and vice-versa.
This is also called a bijection (which you may prefer if you know French). Exeter starts to
treat points as vectors around now in the text, but they never explain what they are doing,
so it is very confusing.

There are many different types of transformations in Mathematics 2 such as translations,
rotations, dilations, reflections and so forth. There are also classes of transformation such as
isometries, which preserve distance between points, and similarity transformations, in which
all lengths may be multiplied by the same scalar. We are now starting to reconsider these
in the context of vectors.

In vector notation, we can simply write T (u) = v, where v is the image of vector u
under transformation T . It is typical to use capital letters near T for transformations. As
an example, if T is dilation about the origin with magnification factor 3, then it is written
using points as T (x, y) = (3x, 3y), and with vectors simply as T (v) = 3v.

An important class of transformation that Exeter does not describe explicitly but which is
fundamental in everything we are doing is the linear transformation. A linear transformation
is one which preserves the operations of adding two vectors and multiplying by a scalar. So
a linear transformation satisfies the following two properties for all vectors u and v and all
scalars a:

1. Linearity (vector addition): T (u+ v) = T (u) + T (v).

2. Linearity (scalar multiplication): T (av) = aT (v).

Notice how these are similar to the two linearity properties of the dot product.
As an example, the dilation transformation T (v) = 3v is linear because T (u + v) =

3(u+ v) = 3u+ 3v = T (u) + T (v), and also T (av) = 3av = a(3v) = aT (v).
Note that linearity is saying that the transformation “commutes” in a certain sense with

vector addition and scalar multiplication. That is, it doesn’t matter which order we do
things in. We can add two vectors first and then perform the transformation, or else we can
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transform the two vectors separately and then add them—in either case the result is the
same. And the same goes for scalar multiplication: We can multiply by a scalar first and
then perform the transformation, or perform the transformation first and then multiply by
the scalar, and the result is the same. Functions such as linear transformations which pre-
serve some specific structure (in this case vector addition and scalar multiplication) of some
mathematical object (in this case vectors) are of fundamental importance to mathematics
and you will see them again and again as you learn more.

Exercises

1. Exeter 16:6.

2. Exeter 16:7.

3. Which of the transformations of Exeter 7:1, 7:11 and 9:1 are linear? Either prove
that each is linear or demonstrate a counterexample (either a pair of vectors or a
scalar/vector pair that fail to transform linearly).

4. Which of the transformations of Exeter 16:6 are linear? Again either prove linearity
or find a counterexample.

5. Consider the translation T (x, y) = (x+1, y+1). In vector notation, T (v) = v+ [1, 1].
Is T linear? Again either prove linearity or find a counterexample.

6. We say that transformation T is an isometry if |T (v)| = |v| for all v in the vector space.
Say that our vector space is R2. Recall from Mathematics 2 that a transformation is
an isometry if it preserves distances between any two points. In the definition here, it
seems that we are only saying that the transformation preserves the distance between
points and the origin (the length of the vectors). Why is this sufficient to show that
in fact the distance between any two points is preserved?

6 Basis and Dimension

A basis for a vector space is a set of vectors that can be used to generate all of the vectors
in a unique way. For example, in R2 the vectors [1, 0] and [0, 1] generate all of the other
vectors as follows. If we are given an arbitrary vector [x, y] in R2, we can write it as
[x, y] = x[1, 0]+ y[0, 1]. We say that [x, y] is a linear combination of [1, 0] and [0, 1], since we
can write [x, y] as a sum of the two vectors [1, 0] and [0, 1], with appropriate scalar coefficients.
Furthermore this representation of [x, y] is unique, because if also [x, y] = a[1, 0] + b[0, 1],
then since a[1, 0] + b[0, 1] = [a, b] we must have a = x and b = y, so x and y were the only
coefficients that worked.

The vectors [1, 0] and [0, 1] are known as the standard basis for R2, and are often desig-
nated as e1 and e2 respectively. It is easy to see how to generalize this to Rn. For example
the standard basis for R3 is e1 = [1, 0, 0], e2 = [0, 1, 0] and e3 = [0, 0, 1]. In applied math
and physics books you will sometimes see these three vectors written as ı̂, ȷ̂, k̂ or x̂, ŷ, ẑ. The
carat or “hat” over the vector indicates that it has length 1.

There can be many different bases for a vector space. To determine if a set of vectors is
a basis, you need to make sure every vector in the vector space can be written as a linear
combination of the basis vectors in exactly one way. It is this uniqueness that makes a basis
so powerful.

7



Another basis for R2 is [1, 0] and [1, 1]. Let’s prove this.

Theorem. The vectors [1, 0] and [1, 1] are a basis for R2.

Proof. We can write an arbitary vector [x, y] as

(x− y)[1, 0] + y[1, 1] = [x− y, 0] + [y, y] = [x, y].

Furthermore say that [x, y] = a[1, 0]+b[1, 1] for some a and b. Then since a[1, 0]+b[1, 1] =
[a + b, b], then we must have b = y and a + b = x, and so a = x − b = x − y. Therefore
the representation [x, y] = (x − y)[1, 0] + y[1, 1] is unique. Since every vector in R2 can be
written as a unique linear combination of [1, 0] and [1, 1], these two vectors form a basis for
R2.

Although there may be many different bases for a vector space, one remarkable fact is
that they always have the same number of elements! For example a basis for R1 must always
consist of one vector (which vectors would work?), a basis for R2 must always consist of
two vectors, a basis for R3 must always consist of three vectors, and so forth. We will not
prove this fact here. The number of vectors in the basis for a vector space is called the
dimension of the vector space. So R1 has one dimension, R2 has two dimensions, R3 has
three dimensions and in general Rn has n dimensions, just as you would think. Geometrically
a basis is capturing the notion of “independent degrees of freedom”, with each basis element
representing a distinct degree of freedom.

Exercises

1. Prove that [1, 1] and [−1, 1] form a basis for R2, imitating the style of the theorem
above.

2. Do [1, 1] and [−1,−1] form a basis for R2? If so, prove it. If not, show what goes
wrong.

3. Prove that [1, 0, 0], [0, 1, 0] and [1, 0, 1] form a basis for R3, imitating the style of the
theorem above.

4. Why doesn’t [1, 1] form a basis for R2? What fails?

5. Why don’t the three vectors [1, 0], [0, 1] and [1, 1] form a basis for R2? What fails?

7 Linear Transformations and Bases

We are now ready to put together the ideas of linear transformations and bases. The amazing
fact is that once we know how linear transformation T transforms all of the basis vectors,
we also know how it transforms any vector! This follows immediately from the fact that we
can write any vector as a unique linear combination of the basis vectors, and the fact that
T is linear.

Let’s see how this works with an example. Let’s consider R2 with the standard basis.
Then [x, y] = x[1, 0] + y[0, 1] in terms of this basis. If we now apply T to [x, y] we get

T ([x, y]) = T (x[1, 0] + y[0, 1]) = T (x[1, 0]) + T (y[0, 1]) = xT ([1, 0]) + yT ([0, 1]).
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Notice that we used both linearity rules for T . And notice that given T ([1, 0]) and T ([0, 1]),
the images of [1, 0] and [0, 1] respectively, we know exactly what T ([x, y]) must be!

Let’s see how to use this to our advantage. Say we want to dilate by 3 centered at the
origin. All we need to do is figure out the images of [1, 0] and [0, 1] by this dilation, and then
we can use linearity to find out the image of any vector. So T ([1, 0]) = [3, 0], T ([0, 1]) = [0, 3],
and using the fact that T ([x, y]) = xT ([1, 0]) + yT ([0, 1]) (that we showed above) we get in
general that T ([x, y]) = x[3, 0] + y[0, 3] = [3x, 3y].

That was so simple perhaps it didn’t seem interesting, so let’s try a more complicated
example. Consider a reflection across the line y = x. This was on the practice test and you
may remember there were several ways to do it, all somewhat complicated. We will now see
how easy it is to do with our basis. It is easy to see that T ([1, 0]) = [0, 1] and T ([0, 1]) = [1, 0]
in this case. The two basis vectors are simply exchanged. Now it follows that in general
T ([x, y]) = x[0, 1] + y[1, 0] = [y, x], exactly what we showed before but now it is a lot less
work.

One more example, a rotation counterclockwise by 45 degrees: Here we have T ([1, 0]) =[√
2
2
,
√
2
2

]
and T ([0, 1]) =

[
−

√
2
2
,
√
2
2

]
, which you can calculate using 45-45-90 triangles. In

this case calculating the tranformation of a general point [x, y] would be very complicated,
but using linearity it is simple:

T [x, y] = x

[√
2

2
,

√
2

2

]
+ y

[
−
√
2

2
,

√
2

2

]
=

[√
2

2
(x− y),

√
2

2
(x+ y)

]
There is one subtlety that needs to be addressed: This only works if T is really a linear

transformation! Exercise 1 shows what can go wrong if that assumption is not satisfied.

Exercises

1. Consider the translation T ([x, y]) = [x, y] + [1, 1] = [x+ 1, y + 1]. We have T ([1, 0]) =
[2, 1] and T ([0, 1]) = [1, 2], so by linearity T ([x, y]) = x[2, 1] + y[1, 2] = [2x+ y, x+2y],
which isn’t a translation by [1, 1] at all! What’s going on?

2. Write the formula for T ([x, y]) where T is rotation counterclockwise by θ degrees.

3. Try writing a formula for T ([x, y]), where T is dilation about the origin with magnifi-
cation factor 3, using [1, 0] and [1, 1] as the basis vectors. That is, determine what T
does to the two basis vectors, and then compute what T does to an arbitrary vector
by using how the vector is written as a linear combination of [1, 0] and [1, 1]. Do you
get the same answer as we got using [1, 0] and [1, 1] as the basis?

4. Write the formula for T ([x, y]) where T is dilation about the origin with magnification
factor 5, followed by reflection about the line y = x.

5. Write the formula for T ([x, y]) where T is reflection about the line y = x, followed
by counterclockwise rotation by 30 degrees, followed by dilation about the origin with
magnification factor 7.

8 Matrices

Once a basis is fixed for a vector space, it is possible to represent a linear transformation in
a very concrete form using a matrix. Let’s continue to use R2 with the standard basis to be
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concrete. We are now going to write our vectors as column vectors, which is standard when
using matrices. Say that

T

([
1
0

])
=

[
a
c

]
and T

([
0
1

])
=

[
b
d

]
.

Then by linearity for an arbitary vector [x, y] we have

T

([
x
y

])
= xT

([
1
0

])
+ y T

([
0
1

])
= x

[
a
c

]
+ y

[
b
d

]
=

[
ax+ by
cx+ dy

]
.

Now note that the first entry of the result vector is just [a, b] · [x, y] and the second entry is
just[c, d] · [x, y]. This is exactly how we defined matrix multiplication! So we can write

T

([
x
y

])
=

[
a b
c d

] [
x
y

]
.

This gives us a very concrete representation of the linear transformation as matrix multi-
plication. Note also that the two columns of the matrix are exactly the images of the basis
vectors [1, 0] and [0, 1] under the transformation. This gives an easy way to write the matrix
for any linear transformation. The Exeter exercises explore this further.

Exercises

1. Exeter 16:8.

2. Exeter 18:1.

3. Exeter 18:8.

4. Exeter 18:9.

5. Exeter 19:3.

6. Exeter 19:4.

7. Exeter 20:7.

8. Exeter 21:4.

9. Exeter 21:6.

10. Exeter 22:1.

11. Exeter 22:3.

12. Exeter 22:6.

13. Exeter 22:7.
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