
Math 115A
Homework 2 Comments

I graded 10 of the problems:
Section 1.4: 3d, 4b, 5b, 10, 15
Section 1.5: 5, 13b, 20
Section 1.6: 2d, 4, 13
Each problem is worth 2 points. A grade of 0 indicates no solution or a substantially wrong solution. A
grade of 2 indicates a correct or nearly correct solution. Otherwise the grade given is 1.
If you believe a problem was misgraded, or I made some addition or other error, please write a short note
explaining the situation, attach it to your homework, and return it to me (either in person, in my mailbox,
or under my office door). I’ll take a look and afterwards leave your homework in a box outside my office.
The following are comments and occasionally solutions for the graded problems.

General Comments
Although the median score was down slightly from the previous problem set (11 versus 12 before), there
seemed to be more high scores than before, and overall I felt the quality was higher. I was impressed that
peoples’ proofs already seem better than the first assignment. The high score this time was 19; the high
score of homework 1 was 17.

1.4

3d. I graded this part since it wasn’t in the back of the book. If you got it right and showed your work
(I’m happy to say almost everyone showed some work) then you got 2 points.

4b. Same as 3d.

5b. Same as 3d.

15. I gave one point for a correct proof and one point for two good examples. If you got most of the proof
and just one example, I gave one point overall. Quite a few people did very well on the proof, and
there were several good solutions. The easiest was to use problem 13 in the same section. Since
S1 ∩ S2 ⊆ S1 and also S1 ∩ S2 ⊆ S2, then we have both span(S1 ∩ S2) ⊆ span(S1) and
span(S1 ∩ S2) ⊆ span(S2), so span(S1 ∩ S2) ⊆ span(S1) ∩ span(S2). You can also use Theorem 1.5, or
argue directly from the definition of span.

Not many people were able to come up with good examples. I’d like to emphasize that it’s very
important to be able to come up with examples and counterexamples, both to make sure you
understand what is going on and to help your intuition when you run into more abstract mathematics.
It’s a hard skill to develop, but as with anything the best way to get better is to practice.

For an example of where equality holds, taking S1 = S2 (say S1 = S2 = {(0, 1)} ⊆ R2) will certainly
work, since then both sides are simply span(S1). For inequality it’s a little harder. A good idea is to
choose S1 and S2 so that they have empty intersection but that their spans do not. So for example
S1 = {(0, 1)} and S2 = {(0, 2)} (in R2; for examples always make it clear what vector space you’re
working in!) would work as you can check.

1.5

5. I regretted a little picking this one to grade since it’s hard to say exactly what a good answer is. I
ended up being quite lenient with grading. Given anxn + · · ·+ a0 = 0, we want to show ai = 0 for all
i. Now first of all what is 0 in the vector space Pn(F )? It’s the zero polynomial. We know that two
polynomials are equal iff all of their coefficients are equal, and 0 = 0xn + · · ·+ 0, so it follows all
ai = 0.

13b. This problem was quite difficult and no one got it perfectly correct, although I’m happy that a few
people came very close, and many people got the easy direction at least. I went over the solution to
part (a) in office hours, so I just graded part (b), which is a more difficult variation on part (a).

First of all what does “a field of characteristic not equal to two” mean? I looked at the sections
referenced by the index, but nowhere does the text seem to define characterstic of a field. You’ll learn
this in Math 110 or 117, but basically characteristic two means that in the field 2 = 0, where
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2 = 1 + 1 and 0 and 1 are the additive and multiplicative identities, respectively. In all the fields we
deal with in this class the characterstic is 0, which means you can add 1 to itself as many times as
you like and you’ll never get 0. However there exist fields of “positive” characterstic such as 2; an
example is the finite field with two elements 0 and 1, and where addition and multiplication are
defined modulo 2. These fields have important applications, for example in coding theory. The
problem with them, however, is that you can’t divide by 2, and it turns out that will be necessary in
both parts of this problem, so that is why they are ruled out.

The first difficulty of this problem is a logical one. Linear independence is phrased as an implication:∑
aixi = 0 =⇒ ai = 0. On top of that we are trying to show something LI implies something else

LI, so the form of what we’re trying to prove (just one direction) is like this:
(A =⇒ B) =⇒ (C =⇒ D). This is very confusing! If you’re not careful you might end up proving
instead something more like (A =⇒ B) =⇒ C or (A =⇒ B) =⇒ D, both of which are not what
we want.

If you think carefully about what (A =⇒ B) =⇒ (C =⇒ D) means, though (or manipulate it
logically, or try all 16 values of true and false), you’ll see that it’s logically equivalent to
[(A =⇒ B) ∧ C] =⇒ D, where ∧ means “and”. One way to reason is this: We are trying to show
C =⇒ D, given that A =⇒ B. Now to show that C =⇒ D, we need to show that D holds
whenever C holds. However we also know that A =⇒ B holds, so this is the same as showing if both
A =⇒ B and C hold, then D holds.

Now finally to the problem. For iff proofs, the strategy to use is to note that one direction is almost
always easier than the other, and to find that easy direction and do it first. Not only do you get
partial credit that way (I gave one point for each direction), but you can often understand what’s
going on better and then be in better shape to tackle the harder part. In this case the harder part
involves some further technical difficulties. Here is the full proof.

Proof. ( =⇒ ) We are given u, v, w are LI, which means a1u + a2v + a3w = 0 =⇒ a1 = a2 = a3 = 0.
We want to show u + v, u + w, v + w are LI, which means that
b1(u + v) + b2(u + w) + b3(v + w) = 0 =⇒ b1 = b2 = b3 = 0. Rearranging terms we have
(b1 + b2)u + (b1 + b3)v + (b2 + b3)w = 0. Since u, v, w are LI by hypothesis, we know that
b1 + b2 = b1 + b3 = b2 + b3 = 0. We can easily solve this system of 3 equations in 3 unknowns to find
that b1 = b2 = b3 = 0.

Note that even in this part the field characteristic not being 2 comes into play. When you solve the
system you’ll get something like 2b3 = 0, and you’d conclude b3 must be 0, but you can’t do that if
2 = 0. In fact in a field of characteristic 2, b1 = b2 = b3 = 1 is also a solution as you can easily check.

( ⇐= ) Now we are given u + v, u + w, v + w are LI, which means that
a1(u + v) + a2(u + w) + a3(v + w) = 0 =⇒ a1 = a2 = a3 = 0. Again we can rearrange terms so that
(a1 + a2)u + (a1 + a3)v + (a2 + a3)w = 0 =⇒ a1 = a2 = a3 = 0. We want to prove that u, v, w are
LI, which means b1u + b2v + b3w = 0 =⇒ b1 = b2 = b3 = 0. The problem here is that to use our
hypothesis, we need to find, given b1, b2, b3, a triplet of numbers a1, a2, a3 such that a1 + a2 = b1,
a1 + a3 = b2, and a2 + a3 = b3. If such a triplet exists, then by our hypothesis we know that
a1 = a2 = a3 = 0, which will immediately imply that b1 = b2 = b3 = 0, what we want.

How do we find such a triplet? By linear algebra of course! In matrix form we have1 1 0
1 0 1
0 1 1

a1

a2

a3

 =

b1

b2

b3

 .

Call the matrix on the left A. Then to solve this system for a1, a2, a3 we can either row-reduce, or
multiply both sides of the equation by A−1. I won’t do the computation here, but the result is that a
solution exists and it is a1 = b1

2 + b2
2 −

b3
2 , a2 = b1

2 −
b2
2 + b3

2 and a3 = −b1
2 + b2

2 + b3
2 . Again we see

where characteristic not two is important.

If you know anything about change of basis this may all look familiar. What we are proving is that
u + v, u + w, v + w is also a basis for the space spanned by u, v, w, and the reason this is true is that
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the change of basis matrix (which also happens to be A) is invertible, as you can tell just by
calculating its determinant (which happens to be −2; so you see again the matrix would not be
invertible in a field of characteristic 2). That gives the quickest proof of this problem, so I guess the
point of doing it the hard way now is to appreciate how much easier things become when we’ve built
up some more theory.

20. To do this problem we both have to understand just what the vector space is, and also some
properties of the exponential function. First of all what is the 0 element of the vector space F (R, R)?
It is a function, call it f0, such that f0(x) = 0 for all x ∈ R. So to say that f and g are LI means that
aert + best = f0 implies that a = b = 0.

Now if aert + best = f0, this implies aert = −best. Say b 6= 0. Then it follows −best is never 0 for any
t ∈ R, so we can divide both sides by −best. Note that this is not a vector space operation–we are
treating this as an equality of functions of real numbers now. We get that −a

b e(r−s)t = 1 for all t ∈ R.
However since by hypothesis r 6= s, this is not true. So it must be the case that b = 0. Now we are
reduced to aert = f0, and the only way for this to be true is for a = 0.

1.6

2d. Grading was the same as problem 3d of section 1.4. This is a basis. Some people checked both linear
independence and that the set spans, but just one is enough because you know a basis of R3 has 3
elements.

4. This has a very simple solution: The dimension of P3(R) is 4, and there are only three vectors
(polynomials) in this set. So they cannot possibly generate (span) P3(R). Some people thought this
problem was asking if the polynomials are linearly independent, which is true, but not what was
asked for.... Perhaps they thought the dimension of P3(R) was 3, in which case proving linear
independence would have been sufficient to prove that the vectors span the space. Some people
actually worked through trying to generate any polynomial in P3(R) from the three, and I gave full
credit for this even though it is certainly not the best solution.

11. I was originally going to grade this, but decided it was too similar to problem 13 of section 1.5, and
so graded problem 13 of this section instead. Note that you can use the same method of 1.5 number
13 to solve this–prove that the vectors are linearly independent, and then it follows they are a basis
since there are the same number of them as the original basis {u, v}. Another way to solve it would
be to show that the sets span the same space as {u, v}.

13. Most people had no trouble with this one. You row-reduce the matrix and find the basis of the null
space is {(1, 1, 1)}.
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