
Math 116
Homework 1 Solutions

I graded 4 of the problems:
Section 1.12: 4, 8, 12; plus webpage problem E.
Each problem is worth 3 points. A grade of 0 indicates no solution or a substantially wrong solution. A
grade of 3 indicates a correct or nearly correct solution. Otherwise the grade given is 1 or 2 depending
upon how much work was put in and how close the solution is to being correct. How neat and clear your
solution is also affects the grade I give.
If you believe a problem was misgraded, or I made some addition or other error, please write a short note
explaining the situation, attach it to your homework, and return it to me (either in person, in my mailbox,
or under my office door). I’ll take a look and return the homework in the next section.
The following are solutions to the homework problems (excepting problems whose solutions are in the back
of the text) and additional comments for the problems I graded.

General Comments
The maximum number of points was 12. The high score was 12, the median was 9 and the mean was 7.9. I
graded two easier computational problems and two harder proof problems. As this was the first assignment
I was fairly generous in grading; in particular I did not take off for sketchy and poorly-written proofs.
However I will be much more strict about this from now on. Please write clear proofs and be generous with
words to explain what you’re doing!

2. The only divisors of 2n are ±1,±2,±22, . . . ,±2n, so there are 2n + 2 divisors. Note that this is
correct in the boundary case n = 0.

4. Following the proof in the book somewhat, if −b/2 < r ≤ b/2, then dividing all sides of the latter by b
we have −1/2 < r/b ≤ 1/2. Now if a = qb + r is also to hold, we must have −1/2 < a/b− q ≤ 1/2,
which implies 1/2 > q − a/b ≥ −1/2 which implies a/b− 1/2 ≤ q < a/b + 1/2. It is always possible to
find an integer in the interval [a

b −
1
2 , a

b + 1
2 ), so this is our q and we’ve proven existence. In fact there

is exactly one integer in this interval so we’ve proven uniqueness as well: Once q is determined this
way then r = q − qb. We can specify the value of q as da

b −
1
2e.

Some people said q = ba
b + 1

2c, but note that that would lie in the range (a
b −

1
2 , a

b + 1
2 ] This is a

subtle point, though, and I didn’t otherwise take off for it.

Some people followed a different proof which was based on one done in class. Let
S = {a− qb : q ∈ Z and a− qb > −b/2}. Since this is a set of integers with a lower bound, it must
have a least element, call it r0. By definition there is some q0 ∈ Z such that a− q0b = r0; also by
definition −b/2 < r0. We claim also that r0 ≤ b/2. r0 > b/2 then a− (q0 + 1)b = r0 − b > −b/2, and
so r0 − b ∈ S which contradicts minimality of r0 (note that b > 0). This proves existence.

One can then prove uniqueness as follows. Pretend there are two pairs q, r and q′, r′ with
−1/2 < r, r′ ≤ 1/2 that satisfy a = qb + r and a = q′b + r′, Then we have qb + r = q′b + r′ and so
(q − q′)b = r′ − r. However −1 < r′−r

b < 1, which implies −1 < q − q′ < 1, and since both q and q′

are integers we must have q′ − q = 0 and therefore r − r′ = 0; it follows q = q′ and r = r′.

6. Clearly the integer 1 satisfies all three congruences. A general method for solving simultaneous
congruences is given in Section 2.15 on the Chinese Remainder Theorem. (“Chinese Remainder
Theorem” is missing from the index, so I was worried for a while that it wasn’t covered in the book,
which would be very strange given its fundamental importance for both number theory and
cryptography.)

8. The number 2m (m ≥ 0) has binary length m + 1, and as long as m > 0 then 2m + 1 has the same
length. In the case m = 2n, where n ≥ 0, it follows m > 0 and so 22n

+ 1 has binary length 2n + 1.

Comments: If you wrote down the correct answer without a decent justification, I gave only two
points. Almost no one discussed the boundary case; be sure to be careful about this in the future.
Most people used Theorem 1.3.3, but were not careful about evaluating blog2 22n

+ 1c+ 1. However I
was fairly generous grading this.
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12. Since f = O(F ) we know there exist positive integers B1, C1 such that
f(n1, . . . , nk) ≤ C1F (n1, . . . , nk) for all ni ≥ B1, 1 ≤ i ≤ k. Similarly since g = O(G) we know there
exist positive integers B2, C2 such that g(n1, . . . , nk) ≤ C2G(n1, . . . , nk) for all ni ≥ B2, 1 ≤ i ≤ k.
Let B = max(B1, B2) and C = max(C1, C2), and it follows that (f + g)(n1, . . . , nk) =
f(n1, . . . , nk) + g(n1, . . . , nk) ≤ CF (n1, . . . , nk) + CG(n1, . . . , nk) = C(F + G)(n1, . . . , nk) for all
ni ≥ B1, 1 ≤ i ≤ k, and therefore f + g = O(F + G). Let C ′ = C1 · C2 and it follows similarly that
that fg = O(FG) using B,C ′ as the constants.

Comments: Almost no one handled the Bi constants in their solutions, but I didn’t take off for this.

C. [10000]10 = [10011100010000]2 = [111201101]3 = [41104]7.

D. [3421]5 + [1234]5 = [10210]5. [3421]5 · [1234]5 = [11004114]5. [101010]2 = [110]2 · [111]2 + [0]2.

E. Answer: BE01.

Comments: Almost everyone got this right. I took off one point for each hexidecimal digit wrong.
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