
Math 116
Homework 5 Solutions

I graded 4 of the problems: 1, 4, 5 and 2.22.21
Each problem is worth 3 points. A grade of 0 indicates no solution or a substantially wrong solution. A
grade of 3 indicates a correct or nearly correct solution. Otherwise the grade given is 1 or 2 depending
upon how much work was put in and how close the solution is to being correct. How neat and clear your
solution is also affects the grade I give.
If you believe a problem was misgraded, or I made some addition or other error, please write a short note
explaining the situation, attach it to your homework, and return it to me (either in person, in my mailbox,
or under my office door). I’ll take a look and return the homework in the next section.
The following are solutions to the homework problems (excepting problems whose solutions are in the back
of the text) and additional comments for the problems I graded.

General Comments
The maximum number of points was 12. The high score was 10, the median was 6 and the mean was 5.9. I
graded two computational problems and two proof problems; almost everyone did well on the computations
but had trouble with the proofs, so 6 and 7 were the most common scores.

1. Evaluate 212345 mod 691.

First verify that 691 is prime. Then, by Fermat’s little theorem, we know 2690 ≡ 1 (mod 691). Using
division with remainder we have 12345 = 690 ∗ 17 + 615, so 212345 ≡ 2615 (mod 691). Now use fast
exponentiation. By repeated squaring we have

21 ≡ 1 (mod 691)
22 ≡ 4 (mod 691)

222
≡ 16 (mod 691)

223
≡ 256 (mod 691)

224
≡ 2562 ≡ 582 (mod 691)

225
≡ 5822 ≡ 134 (mod 691)

226
≡ 1342 ≡ 681 (mod 691)

227
≡ 6812 ≡ 100 (mod 691)

228
≡ 6812 ≡ 326 (mod 691)

229
≡ 3262 ≡ 553 (mod 691)

Since 615 = 512 + 64 + 32 + 4 + 2 + 1 = 29 + 26 + 25 + 22 + 2 + 1 we have
2615 = (229

)(226
)(225

)(222
)(22)(21) ≡ 553 · 681 · 134 · 16 · 4 · 2 ≡ 246 (mod 691).

Comments: Almost everyone got this. I didn’t take off for computation errors as long as you showed
you understood the method. Most people didn’t use Fermat’s little theorem but just calculated the
full binary expansion of 12345, which uses powers of 2 up to 213. This is fine as well, and isn’t much
more work.

2. Find an element of order 442 in (Z/443Z)∗.

First verify that 443 is prime. Next factor 442 = 2 · 13 · 17. A good first guess for an element of order
442 is 2. Using Theorem 2.14.1, we compute 213·17 ≡ −1 (mod 443), 22·17 ≡ 35 (mod 443), and
22·13 ≡ 123 (mod 443). This proves that the order of 2 is 442.
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3. Find all m such that (Z/mZ)∗ has 4, 6, 8 or 60 elements.

We know that the size of (Z/mZ)∗ is φ(m) where φ(pn) = pn − pn−1 = pn−1(p− 1) for p prime, and
is multiplicative, meaning that φ(k ·m) = φ(k)φ(m) if gcd(k, m) = 1. Let’s start computing φ(pn) for
some small values of p and n.

m 2 22 23 24 3 32 5 52 7 11 13 31 61
φ(m) 1 2 4 8 2 6 4 20 6 10 12 30 60

No other prime powers will be of use, as you can convince yourself. Not even all of these will be of
use, since there are no m such that φ(m) equals 3 or 5. We now look at all multiplicative
combinations to get the possible answers for each group order φ(m):

φ(m) m
4 5, 8, 10
6 9, 18
8 10, 15, 16, 24, 30
60 61, 77, 93, 99, 122, 124, 154, 186, 198

4. Find the least positive integer A that is congruent to 7 mod 33, 2 mod 28, and 3 mod 65.

We solve the following congruences:

y1(28 · 65) ≡ 1 (mod 33)
y2(33 · 65) ≡ 1 (mod 28)
y3(33 · 28) ≡ 1 (mod 65)

Multiplying and reducing, this gives

y1(5) ≡ 1 (mod 33)
y2(17) ≡ 1 (mod 28)
y3(14) ≡ 1 (mod 65)

Using the extended Euclian algorithm or some other method, solutions to these equations are
y1 = 20, y2 = 5, and y3 = 14. It follows
A ≡ 7y1(28 ·65)+2y2(33 ·65)+3y3(33 ·28) ≡ 7 ·20 ·28 ·65+2 ·5 ·33 ·65+3 ·14 ·33 ·28 ≡ 315058 ≡ 14758
(mod 33 · 28 · 65).

Comments: Most people got this right, although I did take off a point if you didn’t follow direction
and give the least positive answer. Some people calculated an intermediate result using two of the
congruences, and then combined that with the final congruence. That’s fine as well.

5. Define the nth Fermat Number to be Fn = 22n

+ 1. Show that if a prime p divides Fn, then 2n+1 divides
p− 1, i.e., p ≡ 1 (mod 2n+1). Using this result, show (with only a little computation) that F4 is prime.

Say that p|22n

+ 1. This means 22n ≡ −1 (mod p). So if we let k be the order of 2 mod p, we know
that k - 2n. Squaring both sides of our congruence results in 22n+1 ≡ 1 (mod p). From this we know
that k | 2n+1. So there is only one possibility, k = 2n+1. We also know by Fermat’s Little Theorem
that 2p−1 ≡ 1 (mod p). Therefore k = 2n+1 must divide p− 1.

We now use this result to show that F4 = 216 + 1 is prime. Let p be the smallest prime dividing F4.
Then if p 6= F4, we must have p ≤

√
216 + 1 (think about why this must be so). Since 216 + 1 is just

slightly bigger than 216, it follows
√

216 + 1 is just slightly bigger than
√

216 = 28 = 256. In fact if
you work it out more precisely you’ll see p ≤ 256. By our result, we also know that 25 = 32 divides
p− 1, so the only possibilities for p are p = 33 + 32k, for k = 0 up to b 256−33

32 c = 6. So check each of
the numbers 33, 65, 97, 129, 161, 193, 225. Of these, only 97 and 193 are prime, and neither divides F4,
so we’re done. Note that you don’t have to check if each number is prime or not—you can just
blindly divide F4 by it and make sure there is a non-zero remainder.

Comments: This was a difficult problem and I wasn’t going to grade it, but looking over people’s
assignments I saw most people had attempted a solution, so I was curious to see what everyone
wrote. Unfortunately almost all of the solutions were nonsense or just incorrect. Surprisingly almost
no one did the work to show F4 is prime. This was worth 1 point, and the proof 2 points. If you got
any points on this problem, think of it as extra credit.
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21. Assume gcd(a, p) = 1; otherwise a ≡ 0 (mod p) and the problem is trivial. We want to show that
a(p+1)/2 ≡ a (mod p). We have a ≡ b2 (mod p), so a(p+1)/2 ≡ bp+1 (mod p); it is thus enough to
show bp+1 ≡ b2 (mod p). But bp+1 = bp−1b2 ≡ b2 (mod p) by Fermat’s Little Theorem. Note that
the condition p ≡ 3 (mod 4) was only needed so that (p + 1)/4 would be an integer.

Comments: I was suprised that almost no one got this one, since it didn’t seem very hard. Make sure
you understand the solution, at least.

23. In exercise 17 in the last homework we determined that the order of 2 was 1236. It follows the order
of 21236/103 = 212 is 103.

25. We solve the following congruences:

y1(3 · 5 · 7) ≡ 1 (mod 2)
y2(2 · 5 · 7) ≡ 1 (mod 3)
y3(2 · 3 · 7) ≡ 1 (mod 5)
y4(2 · 3 · 5) ≡ 1 (mod 7)

These are easy to solve by inspection. We get y1 = 1, y2 = 1, y3 = 3, and y4 = 4 as solutions.
Therefore a solution is

1 · 105 + 1 · 70 + 3 · 42 + 4 · 30 = 421 ≡ 1 (mod 210).

So we just could have guessed 1 as the answer from the outset, but it’s good practice to see how to
calculate it using the Chinese Remainder Theorem.
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