
Math 116
Homework 7 Solutions

I graded 4 of the problems: 2, 4, 8, 10.
Each problem is worth 3 points. A grade of 0 indicates no solution or a substantially wrong solution. A
grade of 3 indicates a correct or nearly correct solution. Otherwise the grade given is 1 or 2 depending
upon how much work was put in and how close the solution is to being correct. How neat and clear your
solution is also affects the grade I give.
If you believe a problem was misgraded, or I made some addition or other error, please write a short note
explaining the situation, attach it to your homework, and return it to me (either in person, in my mailbox,
or under my office door). I’ll take a look and return the homework in the next section.
The following are solutions to the homework problems (excepting problems whose solutions are in the back
of the text) and additional comments for the problems I graded.

General Comments
The maximum number of points was 12. The high score was 12, the median was 11 and the mean was 10.2.
Everyone did well on this assignment and there were many perfect scores.

2. Factor 437 = pq = 19 · 23. Then (p− 1)(q − 1) = 18 · 22 = 22 · 32 · 11 = 396. The possible encryption
exponents (up to congruence mod 396) are all numbers between 1 and 396 that are relatively prime
to 396; these are all numbers which have an inverse mod 396. Notice that 1 is not a very good choice
for an encryption exponent, since it would be a little too easy to decrypt, but it’s still possible! So
there are φ(396) = φ(22) · φ(32) · φ(11) = 2 · 6 · 10 = 120 possible encryption exponents. In general for
n = pq there are φ((p− 1)(q − 1)) possible encryption exponents.

Comments: Many people disallowed the encryption exponent e = 1, which is fine. The wording in the
book implied you should list the 120 (or 119) possible encryption exponents, and a few people did,
but I certainly did not expect you to do so. Just indicating how you would determine which numbers
are possible encryption exponents and which are not was fine.

4. Factor 899 = pq = 29 · 31. Then (p− 1)(q − 1) = 28 · 30 = 840. Using the extended Euclidian
algorithm, determine that 1 = 3 · 840− 229 · 11, so the inverse of 11 mod 840 is −229 ≡ 611
(mod 840). Now compute 468611 ≡ 13 (mod 899) via fast exponentiation. The plaintext is therefore
13. As a check you can compute 1311 ≡ 468 (mod 899).

8. We have m3 ≡ 208 (mod 391), m3 ≡ 38 (mod 55), and m3 ≡ 32 (mod 87). As 391 = 17 · 23,
55 = 55 · 11 and 87 = 3 · 29 are all prime, there is a unique solution to this trio of congruences mod
3 · 5 · 11 · 17 · 23 · 29 = 1870935 by the Chinese Remainder Theorem.

Let’s first solve just the first two congruences. We have m3 = 208 + 391x = 38 + 55y, so
55y − 391x = 170. Using the extended Euclidian algorithm, we get y = 64 · 170 = 10880 and
x = 9 · 170 = 1530. So m3 = 208 + 391 · 1530 = 598438 ≡ 17803 (mod 391 · 55). We could stop here if
17803 were a pure cube as an integer, but unfortunately it isn’t. So now we need to solve the pair of
congruences m3 ≡ 17803 (mod 391 · 55) and m3 ≡ 32 (mod 87).

This gives us 17803 + 21505x = 32 + 87y, or 87y − 21505x = 17771. This results in
x = 38 · 17771 = 675298 and y = 9393 · 17771 = 166923003. So m3 = 14522301293 ≡ 103823
(mod 391 · 55 · 87). It follows m = 47.

Comments: Most people followed the algorithm in the book for computing using the CRT, which
ends up being faster and less effort than doing two steps like this since we didn’t get lucky here and
find a perfect cube using just one of the steps. Of course either method is perfectly fine.

10. We have 2 · 3− 1 · 5 = 1, so given that m3 ≡ 293 (mod 493) and m5 ≡ 421 (mod 493), we have
m1 ≡ (m3)2 · (m5)−1 ≡ (293)2 · (421)−1 (mod 493). Now 2932 ≡ 67 (mod 493), and (421)−1 ≡ 89
(mod 493) by the extended Euclidian algorithm. Finally 67 · 89 ≡ 47 (mod 493). As a check,
473 ≡ 293 (mod 493) and 473 ≡ 293 (mod 493). Hmmm, this message 47 must be very important to
have appeared in two different problems!
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