
Math 116
Final Problem Set Solutions

Six problems were graded, in two groups:
A: Problems 4.4, 11.4 and cumulative problem 2;
B: Cumulative problems 3, 4d, and 6.
Each problem was worth 5 points, but only the two best scores of each group were retained. The maximum
number of points was therefore 20.
I was happy to see most everyone put in a lot of work into this final problem set. I’m sorry we didn’t have
time to grade more problems, but the grades people received did seem to reflect the overall work they put
in and their understanding. I hope you learned a lot from doing these problems! Solutions to those not
solved in the book are below. Have a great summer!

6.2. The primes less than 100 are
{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97} and so π(100) = 25.
The bounds of Theorem 6.1.6 say that x

log x < π(x) < 1.25506 x
log x ; plugging in x = 100 gives roughly

21.715 < 25 < 27.253.

6.4. Using base 3, we calculate 3225 ≡ 3029026160 (mod 225
+ 1), so since this is not 1, it follows 225

+ 1
cannot be prime. This is too much work to compute by hand as far as I can tell, so you need to use a
computer; I used the PowerMod function of Mathematica.

For base 2, we want to show that 222n

≡ 1 (mod 22n

+ 1) for all n ≥ 0. Equivalently we need to show
22n

+ 1 divides 222n

− 1. The latter is a difference of two squares:
222n

− 1 = (22(2n−1)
+ 1)(22(2n−1) − 1). Again the second factor here is a difference of two squares:

22(2n−1) − 1 = (22(2n−2)
+ 1)(22(2n−2) − 1). Continuing like this k times we get that (22(2n−k) − 1) is a

factor of 222n

− 1. When k = 2n − n− 1 we have that 22(n+1) − 1 = (22n

+ 1)(22n − 1) is a factor of
222n

− 1, and the result follows.

4.4. There are four words {00, 01, 10, 11} in our cipher, and thus 4! = 24 possible ciphers. We just need to
count how many are affine linear and then divide to get the probability. However if you remember
back to the solution to problem 3.15.12 on homework 6, I mentioned that for n = 2 all permutations
are affine linear. It follows that the probability is 1 that a block cipher over {0, 1} of block length 2 is
affine linear. But we’d better prove this fact now that we’re actually using it.

Let f : {0, 1}2 → {0, 1}2 be the permutation; we want to show that we can write f as f(~v) = A~v +~b

where A is invertible. Pretend each word is a column vector. Let ~b = f(00). Let ~a1 = f(10)−~b and
~a2 = f(01)−~b. Then if f is to be affine linear the columns of A must be ~a1 and ~a2. These will be
distinct, since f is a permuation, so the only way A can not be invertible is if either a1 = ~0 or a2 = ~0,
but these cases are also impossible since they would again imply f is not a permutation. Finally since
A~v +~b is injective (and thus a bijection) when A is invertible we must have f(11) = A(11) +~b.
Therefore f(~v) can be written as A~v +~b for an arbitrary permutation f .

Another way this could be solved is by counting the number of affine linear ciphers and showing there
are also 24 distinct ones. There are 3 possible vectors that could be first column of A since the zero
vector is not allowed if A is to be nonsingular. Once the first column is chosen then there are two
possible vectors for the second column since we cannot choose either zero or the vector of the first
column. So there are 6 choices for A. For each A we can choose 4 choices of b, making 24 possible
affine linear ciphers. I’ll leave it as an exercise to show that each of these 24 possibilities results in a
distinct permuation.

4.6. If p ≥ 9/10 then q = 1− p ≤ 1/10. From (4.2), we need to find k such that e−k(k−1)/(2·365) ≤ 1/10.
Taking the logarithm of both sides gives −k(k − 1)/730 ≤ − log 10, or k2 − k ≥ 730 · log 10. Solving
k2 − k − 730 · log 10 = 0 by the quadratic formula we get k = (1±

√
1 + 2920 log 10)/2, so

k ≥ (1 +
√

1 + 2920 log 10)/2 suffices to give the desired probability (notice that this is the same as
(4.3) with n = 365 except the log 2 is replaced by log 10 here). Approximating the value we see that
k = 42 is sufficient for p ≥ 9/10.
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10.2. For a fixed π ∈ S3 and x ∈ {0, 1}3, define fπ
x : {0, 1}3 → {0, 1}3 to be fπ

x (y) = hπ(x, y) = eπ(x)⊕ y.
Then fπ

x is a bijection; in fact its inverse is itself. This means that given a permutation π and a fixed
x, as we vary y among all elements of {0, 1}3 we get as output all elements of {0, 1}3 exactly once.
Thus for a fixed π, for each pair (x, x′) where x 6= x′ we’ll have 8 collisions as we vary the y
parameter for each over all possible strings. As there are

(
8
2

)
= 28 such pairs (x, x′) (the order doesn’t

matter), this gives 28 · 8 = 224 collisions per permutation π.

10.4. We have r = 6− 3 = 3. The original string is 0101010101011. We first prepend two zeros to make the
length divisible by 3, and then append three zeros. This results in 000 101 010 101 011 000. The
length of the original string was 13, or 1101 in base 2. We split this as 11 01 and prepend a 1 to each
part, giving 111 101. Our complete string is thus x = 000 101 010 101 011 000 111 101. With hπ as
our compression function, we then calculate

H0 = 000
H1 = hπ(000 000) = 000⊕ 000 = 000
H2 = hπ(000 101) = 000⊕ 101 = 101
H3 = hπ(101 010) = 101⊕ 010 = 111
H4 = hπ(111 101) = 111⊕ 101 = 010
H5 = hπ(010 011) = 010⊕ 011 = 001
H6 = hπ(001 000) = 100⊕ 000 = 100
H7 = hπ(100 111) = 001⊕ 111 = 110
H8 = hπ(110 101) = 011⊕ 101 = 110.

It follows h(x) = 110.

11.2. Neither is a problem because they are only used to determine the original text given the cipher text;
they do not appear to compromise the decryption exponent d or aid forgery.

11.4. We have n = 28829 = 127 · 227. With p = 127, q = 227, and c = 10101, we compute
mp = c(p+1)/4 mod p = 103 and mq = c(q+1)/4 mod p = 121. Via the extended Euclidean algorithm
we have yp = −84 and yq = 47. We now calculate r = (yppmq + yqqmp) mod n = 9882 and
s = (yppmq − yqqmp) mod n = 3072. Then any of ±r or ±s can be used as the digital signature.
Check that when squared each is congruent to 10101 mod n.

11.8. First calculate h(x)−1 = 2095 mod p− 1 using extended Euclid. Next compute
u = 99 · 2095 mod p− 1 = 1693 mod p− 1. Then s′ = su mod p− 1 = 1859 mod p− 1. Using the
CRT calculate r′ = 3052067. So the signature is (r′, s′) = (3052067, 1859).

1. As in the second problem of quiz 3, φ(φ(n)) represents the number of possible encryption exponents
for an RSA cipher with modulus n. If φ(n) can be computed given n then RSA can be broken
because de ≡ 1 (mod φ(n)), so given e and φ(n) we can compute the decryption exponent d using the
extended Euclidian algorithm.

2. I will use the approximation π(x) ∼ x
log x , although other valid approximations are also fine. Then

π(105) ≈ 8686 and π(106) ≈ 72382, and the number of primes in [105, 106] is approximately
72382− 8686 = 63696 . The probability that a randomly chosen integer in [105, 106] (note that we are
probably chosing 6 digit numbers here, so we wouldn’t pick 106; of course it is not prime anyway!) is
prime is then 63696

106−105 ≈ 0.071. The probability that we pick n numbers at random in this interval
and they are all not prime is approximately (1− 0.071)n. We calculate (1− 0.071)9 ≈ 0.515 and
(1− 0.071)10 ≈ 0.479, so we must pick 10 numbers to ensure the probability that at least one is prime
is at least 0.5.
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3. 106 = [F4240]16.

4. (a) Let g be a primitive root of (Z/pZ)∗. Then if x2 ≡ 1 (mod p), it follows g2k ≡ 1 (mod p) where
gk ≡ x (mod p). It follows the order of g, which is p− 1, divides 2k, and since 0 ≤ k < p− 1 the
only possibilities are k = 0 and k = p−1

2 . The former results in x = g0 = 1 (mod p) and the
latter results in x = g(p−1)/2 ≡ −1 (mod p).

(b) Note that there is only one element of (Z/2Z)∗, namely 1 mod 2, and its square is 1. By the
Chinese Remainder Theorem, an element x mod 2p satisfies x2 ≡ 1 (mod 2p) iff x2

2 ≡ 1 (mod 2)
and x2

p ≡ 1 (mod p), where (x2, xp) is the pair corresponding to x under the CRT bijection
between (Z/2pZ)∗ and (Z/2Z)∗ × (Z/pZ)∗ (concretely x2 = x mod 2 and xp = x mod p). Since
there is only one x2 whose square is 1 (namely 1 mod 2) and two xp whose square is 1 (namely
±1 mod p, we have exactly two pairs (1, 1) and (1,−1) in (Z/2Z)∗ × (Z/pZ)∗ whose square is
(1, 1). These correspond to ±1 mod 2p in (Z/2pZ)∗.

(c) There are only two elements of (Z/4Z)∗, ±1 mod 4, and both squared give 1.

(d) Factor square-free n = p1 · · · pr into a product of prime powers, where the pi are distinct; by the
CRT the number of solutions to x2 ≡ 1 (mod n) is the product of the number of solutions to
x2 ≡ 1 (mod pi) for k = 1, . . . , r. Any n not of one of the forms in parts (a) to (c) must be have
at least 2 odd primes dividing it. In this case by the CRT it follows the number of solutions to
x2 ≡ 1 (mod n) is at least four.

(e) Let f(n) be the number of solutions to x2 ≡ 1 (mod n). If n is square-free then let
n = 2k · p1 · · · pr where the pi are distinct odd primes and k ∈ {0, 1}. Then via the CRT and the
results we’ve established above, f(n) = 2r.
The case for more general n uses more advanced mathematics than we’ve covered in this course.

5. The input text is m1 = 101101 and m2 = 110101. The encryption key is k = 7.

We have

c0 = 100111
c1 = E7(c0 ⊕m1) = 7 · [001010]2 mod 64 = [000110]2 mod 64
c2 = E7(c1 ⊕m2) = 7 · [110011]2 mod 64 = [100101]2 mod 64.

The ciphertext is then c = 000110 100101.

For the CFB case, the ciphertext is c1 = 110, c2 = 110, c3 = 010, and c4 = 011. We have I1 = 100111,
O1 = E7(I1) = 7 · [100111]2 mod 64 = [010001]2, t1 = 010 and m1 = c1 ⊕ t1 = 100.

Next I2 = 111110, O2 = 110010, t2 = 110 and m2 = 000. Next I3 = 110110, O3 = 111010, t3 = 111
and m3 = 101. Finally I4 = 110010, O4 = 011110, t4 = 011 and m4 = 000. The decrypted message is
then m = 100 000 101 000.

6. The order of π is the smallest k > 0 such that πk = I, where I is the identity permutation. Let’s write
π in cycle notation so that it’s easier to see what’s going on: π = (1234)(59867). If you’re not familiar
with cycle notation compare it to the original notation and see if you can figure it out; otherwise look
in an abtract algebra text. We see here clearly that π is made up of disjoint cycles of length 4 and 5.
The cycle of length 4 returns to the identity every 4th power of π, and the cycle of length 5 returns to
the identity every 5th power of π. The order of π is therefore lcm(4, 5) = 20. We could use π in a
Caesar cipher in which we first encode the text base 9 and then encrypt each base 9 “digit” using π.
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