
Math 132
Homework 4 Comments

I graded 4 of the problems:
Section 3.1: 3
Section 3.2: 1d
Section 4.1: 2c, 5
Each problem is worth 3 points. A grade of 0 indicates no solution or a substantially wrong solution. A
grade of 3 indicates a correct or nearly correct solution. Otherwise the grade given is 1 or 2 depending
upon how much work was put in and how close the solution is to being correct. How neat and clear your
solution is also affects the grade I give.
If you believe a problem was misgraded, or I made some addition or other error, please write a short note
explaining the situation, attach it to your homework, and return it to me (either in person, in my mailbox,
or under my office door). I’ll take a look and return the homework in the next section.
The following are comments and occasionally solutions for the graded problems.

General Comments
The maximum number of points was 12. The high score was 12, and the median was 9. There were no
graphing problems this time and it was a fairly short and easy assignment, so not surprisingly the scores
were higher than on previous problem sets.

3.1 3. I did this problem in section but it still seemed like the best to grade out of this section of the book.
Parameterize the quarter circle in three parts, one along the x-axis from (0, 0) to (1, 0), one along the
quarter circle from (1, 0) to (0, 1), and one along the y-axis from (0, 1) to (0, 0). Then the integral of
x2 along the first segment will be 0 since dy is 0, and the integral along the third segment will be 0
since x is 0 at every point. Some people didn’t mention this and I didn’t take off for it, but be careful
on the final.

For the second segment, parameterize it by x = cos θ, y = sin θ where 0 ≤ θ ≤ π/2. We have∫ 2π

0
cos3θ dθ =

∫ 2π

0
(1− sin2θ) cos θ dθ; you can do substitution now and work out the details. The

answer is 2/3.

We now use Green’s Theorem, noting that P (x, y) = 0 and Q(x, y) = x2. So we have
∫∫

D
2x dx dy.

Parameterize the region now by x = r cos θ and y = r sin θ where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π/2. This
gives

∫ 2π

0

∫ 1

0
2r2 cos θ dr dθ = 2/3 as you can easily work out.

3.2 1. I graded part (d). The first step is to determine whether or not y dx− x dy is independent of path.
Some people just claimed it wasn’t, and although integrating it around a closed path and not getting
zero justifies that, I wanted to see some understanding that a differential is independent of path iff it
is exact iff it is closed, for a star-shaped domain which certainly R2 is. Therefore for such a domain it
is sufficient to check whether or not the differential is closed. We compute ∂P

∂y = 1 and ∂Q
∂x = −1, and

these two are not equal so the differential is not closed and thus not independent of path.

We now have to find a closed path γ around which the integral is not zero. Lots of paths work and I
was happy to see people try out several different possibilities. The unit square whose lower left corner
is at the origin is one nice path to use; you have to do four cases but two of them are 0 and the other
two add up to −2 as you can check. Perhaps the easiest path to use was the unit circle. We
parameterize as usual by x = cos θ, y = sin θ and get

∫
γ

y dx− x dy =
∫ 2π

0
(− sin2 θ− cos2 θ) dθ = −2π.

4.1 2. I graded part (c). Many people did not seem to notice that |dz| is defined in the text on page 104 as
|dz| =

√
(dx)2 + (dy)2. Gamelin then goes on to derive |dz| in polar coordinates, which some people

copied without trying to understand what was going on. Let’s try to do it carefully. We are
integrating around the unit circle, so it’s natural to parameterize the points according the angle θ;
the radius is of course 1. So we have x = cos θ and y = sin θ. This gives dx = − sin θ dθ and
dy = cos θ dθ, and it follows |dz| = dθ.

We have
∫

γ
zm |dz| =

∫ 2π

0
(cos θ + i sin θ)m dθ =

∫ 2π

0
eimθ dθ. Now we can either peek ahead to the

next section and note that we can integrate this directly as a complex function (for m 6= 0) as
1

im eiθm
∣∣2π

0
= 0, or we can be integrate this as a pair of real functions by noting that

1



∫ 2π

0
eimθ dθ =

∫ 2π

0
(cos mθ + i sinmθ) dθ = 1

m (sinmθ − i cos mθ)
∣∣2π

0
= 0. I gave full credit for either

way, although you had to show some work and not just state the answer (which was in the back of
the book). You also needed to handle the case m = 0 separately, which is easy:∫ 2π

0
ei0θ dθ =

∫ 2π

0
dθ = 2π.

4.1 5. I did this in section but it was the only ML-estimate problem on the homework so I wanted to grade
it so that everyone can make sure they understand it. To apply the ML-estimate, we need to
determine the length L of the curve γ we’re integrating over, and then bound the function we’re
integrating, showing it has value M or less on all points of γ. First note that γ is the circle of radius
1 centered about the complex point 1, and thus L = 2π. We just need to show that

∣∣∣ ez

z+1

∣∣∣ ≤ e2 for all
points on this circle (note that older printings of the book have z + 3 in the denominator; this is fine
too). If z is on γ, then |z + 1| ≥ 1 as you can see geometrically, or more carefully by noting
|z + 1| =

√
(x + 1)2 + y2 ≥ 1 since both x ≥ 0 and y ≥ 0 on γ, where z = x + iy. It follows∣∣∣ ez

z+1

∣∣∣ ≤ |ez| = |ex|
∣∣eiy

∣∣ = ex. But for z on γ we clearly have 0 ≤ x ≤ 2, so ex ≤ e2 which is what we
wanted to show.
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