
Math 132
Homework 6 Comments

I graded 4 of the problems:
Section 5.3: 1e
Section 5.4: 1d
Section 5.6: 1
Section 5.7: 1b
Each problem is worth 3 points. A grade of 0 indicates no solution or a substantially wrong solution. A
grade of 3 indicates a correct or nearly correct solution. Otherwise the grade given is 1 or 2 depending
upon how much work was put in and how close the solution is to being correct. How neat and clear your
solution is also affects the grade I give.
If you believe a problem was misgraded, or I made some addition or other error, please write a short note
explaining the situation, attach it to your homework, and return it to me (either in person, in my mailbox,
or under my office door). I’ll take a look and return the homework in the next section.
The following are comments and occasionally solutions for the graded problems.

General Comments
The maximum number of points was 12. The high score was 12, the median was 7 and the mean was 7.8.
As this was a fairly short and easy assignment, and on top of that the answers to every problem were in
the back of the book, I hoped everyone would get a 12 this time, but it was not to be. I was fairly strict in
grading, and only two people got a 12, although there were several 11’s (many people missed a point on
5.4 1d). Please make sure you understand any subtleties of problems you may have missed.

5.3 1. I graded part (e). This problem is easy if you use the ratio test. First let w = z2 and ak = 2k

k2+k .
Then we have a power series

∑
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2. Some people did a substitution w = 2z2 and then seemed to think this was
a geometric series that converges for |w| < 1 but this is not true–you still need to use the ratio test.
Other people tried to use the root test but didn’t justify the limits of the roots. I gave only one point
for these kinds of attempts.

5.4 1. Problem 2 was the interesting one of this section but we went over it in discussion so I graded part
(d) of problem 1. To get full credit, you had to be clear about where Log z fails to be analytic, which
is (−∞, 0]. Since 0 is the closest such point to 1 + 2i, we have the radius of convergence R =

√
5.

Those who said the singularity was just 0 got two points, as did those who said things like the
function is not defined for z < 0, which makes no sense since you can’t order complex numbers.
Those who offered no explanation at all got at most one point.

5.6 1. There is a typo in the solution of this problem, which was a good opportunity to see if people were
trying or not. If you did minimal work and just copied down the solution, I gave at most one point.
There is a correction for the solution in the errata for Gamelin’s book; a pointer to this errata can be
found on my class web page.

Following the example in the book, we write
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When you multiply out you only need to keep the terms of order seven or less, which of course end up
being terms of order six or less since there are no odd terms in the power series expansion of cos z.
The others get absorbed into the O(z8).
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5.7 1. I graded part (b); the other two parts we discussed in section. Write 1
z + 1

z5 as z4+1
z5 . Since 0 is not a

root of the numerator, it follows there are four zeros of this function (by the fundamental theorem of
algebra, recently proved!), namely the roots of z4 + 1. There are several ways to find the roots of this
polynomial. One is to note that they must satisfy z4 = −1, and that −1 = eπi+2πki, so that the
general solution is z = eπi/4+kπi/2; then check that e±πi/4, e±3πi/4 are the only four distinct solutions
of this. Another approach is to first factor z4 + 1 = (z2 + i)(z2 − i) and find the two square roots of
each of i,−i by the same method.

Here’s a geometric way to solve the problem that I like. Note that (z4 + 1)(z4 − 1) = z8 − 1, the roots
of which satisfy z8 = 1; in other words the 8th roots of unity. These are simply ekπi/4 for 0 ≤ k < 8;
you can best visualize them as the vertices of an octagon inscribed in the unit circle. Now note that
these are 8 distinct roots, and that four of them, namely ±1,±i, are the roots (fourth roots of unity)
of z4 − 1, so the other four must be the roots of z4 + 1.

To prove they are simple roots, calculate the derivative of z4+1
z5 which is z5(4z3)−5z4(z4+1)

z10 = −z4+1
z6 , so

the roots the numerator are the aforementioned roots of z4 − 1 which are distinct from those of
z4 + 1. I was generous in grading this problem and generally gave full or nearly full credit if it looked
like you tried.
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