
John Leo Math 31B, Winter 2007 February 23, 2007

Midterm 2 Solutions

1. (15 points) Determine the length of the curve

y = x3/2

from the point (0, 0) to the point (4, 8).

Solution. We have y = f(x) = x3/2, and f ′(x) = 3
2

√
x. Plugging into the formula for arc length

gives ∫ 4

0

√
1 + (9/4)x dx =

8
27

(
1 +

9
4
x

)3/2
]4

0

=
8
27

(
103/2 − 1

)
.

2. (15 points) A ball is dropped from a height of 10 meters onto a hard, level surface, and each time it
rebounds its height is 2

3 the high point since the last bounce. Assuming the ball continues to bounce
indefinitely, what is the total distance it travels?

Solution. The series representing the distance is

10 + 2
(

2
3

)
10 + 2

(
2
3

)2

10 + · · · = 10 + 20
(

2
3

) ∞∑
n=1

(
2
3

)n−1

= 10 +
40
3

1
1− 2

3

= 50.

See also exercise 52 in section 12.2, assigned for homework.

3. (20 points)

(a) (10 points) Prove that n! ≥ 2n−1 for all n ≥ 1 by mathematical induction.

Solution. Base case: For n=1 we have 1! = 1 ≥ 1 = 20.
Induction: Assume true for n and prove for n + 1. We have (n + 1)! = (n + 1)n!, and by the
induction hypothesis n! ≥ 2n−1, and so (n + 1)! ≥ (n + 1)2n−1. Furthermore n + 1 ≥ 2 for all
n ≥ 1, and therefore (n + 1)! ≥ 2n which is what we wanted to prove.

(b) (10 points) Determine whether or not
∞∑

n=1

1
n!

converges. Justify your answer. If it converges, give upper and lower bounds on its value.

Solution. By part (a),
1
n!
≤ 1

2n−1

for all n ≥ 1, and so by the comparison test we have

∞∑
n=1

1
n!
≤

∞∑
n=1

1
2n−1

=
1

1− 1
2

= 2.

Therefore the series converges and an upper bound on its value is 2. Since the series has all
positive terms an obvious lower bound on its value is the first term 1. These bounds are sufficient
for full credit, although one can do better of course. This problem is very similar to exercise 29
of section 12.5.
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4. (20 points)

(a) (10 points) Give the definition of a geometric series whose first term is 1. When exactly does this
series converge and what value does it converge to? You do not need to prove your answer.

Solution. Given r ∈ R, a geometric series whose first term is 1 is

1 + r + r2 + r3 + · · · =
∞∑

n=1

rn−1 =
∞∑

n=0

rn.

Any of these three characterizations is fine. The series converges if and only if |r| < 1 and if it
converges the value is

1
1− r

.

(b) (10 points) Give the formula for the the nth partial sum sn of a geometric series whose first term
is 1. Prove your formula is correct using either the textbook’s method or mathematical induction. Be
sure your proof is clear and careful.

Solution. Textbook Method. For r = 1, we have sn = n by definition. If r 6= 1, then

sn = 1 + r + · · ·+ rn−1

1 + rsn = 1 + r + · · ·+ rn−1 + rn

= sn + rn

which, solving for sn, implies

sn =
1− rn

1− r
.

Mathemetical Induction. For r = 1, we have sn = n by definition. For r 6= 1, we want to prove

sn =
1− rn

1− r
.

for all n ≥ 1.
Base case. If n = 1 then sn = 1 by definition, and sn = 1−r

1−r = 1 by the formula.
Induction. Assume true for n and prove for n + 1. By the definition, sn+1 = sn + rn. By the
induction hypothesis, sn = 1−rn

1−r . Therefore

sn+1 =
1− rn

1− r
+ rn

=
1− rn

1− r
+

rn − rn+1

1− r

=
1− rn+1

1− r

which is what we wanted to prove.

5. (30 points)

(a) (5 points) Define the p-series and carefully state for which real p the series converges and diverges.
You do not need to justify your answer.

Solution. For p ∈ R the p-series is defined to be

∞∑
n=1

1
np

.

It converges if and only if p > 1.
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(b) (5 points) Consider the series
∞∑

n=2

1
n lnn

.

What can you say about the convergence of this series by comparing it to p-series?

Solution. You can’t say anything, since

1
n lnn

≤ 1
n

for all n ≥ 2 (the inequality would have to be reversed to show the series diverges using the
comparison test), and

1
n lnn

≥ 1
np

for all p > 1 and all sufficiently large n, since lnn grows more slowly than any positive power of n.
Again the inequality would have to be reversed to show the series converges using the comparison
test.

(c) (10 points) Determine whether or not
∞∑

n=2

1
n lnn

.

converges. Carefully justify your answer.

Solution. Since the comparison test fails, we try the integral test. The function f(x) = 1
x ln x is

clearly positive on [2,∞) and also decreasing since

f ′(x) =
−(1 + lnx)
(x lnx)2

< 0

on that interval. We have ∫ ∞

2

1
x lnx

dx =
∫ ∞

ln 2

1
u

du = ln u]∞ln 2 = ∞

using the substitution u = ln x, and so the integral and series both diverge. This is exercise 21 of
section 12.3.

(d) (10 points) Determine for what real q the series

∞∑
n=2

1
n(lnn)q

.

converges. Carefully justify your answer.

Solution. For q ≤ 1 the series diverges by comparison to the series in part (c). So say that
q > 1 and again use the integral test. The function f(x) = 1

x(ln x)q is clearly positive on [2,∞)
and also decreasing since

f ′(x) =
−(q(lnx)q−1 + (lnx)q)

(x(lnx)q)2
< 0

on that interval. We have∫ ∞

2

1
x(lnx)q

dx =
∫ ∞

ln 2

u−q du =
u1−q

1− q

]∞
ln 2

=
1

(ln 2)q−1(q − 1)

using the substitution u = lnx, and so the integral and series both converge for q > 1. This is
exercise 25 of section 12.3.
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