Math 32AH Midterm 2 Solutions November 24, 2004

- 1. (20 points) Let $f: \mathbf{R}^2 \to \mathbf{R}$ be a linear function in two variables.
 - (a) (10 points) Show that f must have the form of f(x, y) = ax + by where a, b are two real numbers. Since f is linear we have f(x, y) = f(x, 0) + f(0, y) = xf(1, 0) + yf(0, 1). Now let a = f(1, 0) and b = f(0, 1).
 - (b) (5 points) Show that f is continuous at all points of \mathbb{R}^2 from the definition of continuity. See the proof of Theorem 2.6 of Chapter 4 of the text.
 - (c) (5 points) Compute the total derivative of f. We have $D_f(x,y) = \nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (a,b).$
- 2. (20 points)
 - (a) (10 points) Let $f(x,y) = x^2 4y^2 3xy$, compute the total derivative f' and the Hessian f''. We have $D_f(x,y) = \nabla f(x,y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (2x - 3y, -8y - 3x)$, and so $f'' = \begin{pmatrix} 2 & -3 \\ -3 & -8 \end{pmatrix}$.
 - (b) (10 points) Let $f = (x^2 + y^2 + z^2)^{\frac{1}{2}}$, prove that f satisfies the equation:

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = \frac{2}{f}$$

We have $\frac{\partial f}{\partial x} = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$ and $\frac{\partial^2 f}{\partial x^2} = \frac{y^2 + z^2}{(x^2 + y^2 + z^2)^{3/2}}$. By symmetry we have $\frac{\partial^2 f}{\partial y^2} = \frac{x^2 + z^2}{(x^2 + y^2 + z^2)^{3/2}}$ and $\frac{\partial^2 f}{\partial z^2} = \frac{x^2 + y^2}{(x^2 + y^2 + z^2)^{3/2}}$. Their sum is then $\frac{2}{\sqrt{x^2 + y^2 + z^2}}$.

- 3. (20 points) Let f(x, y) be a two variable function.
 - (a) (10 points) Assume $\nabla f(x_0, y_0) \neq 0$, show that $\nabla f(x_0, y_0)$ is the maximum increasing direction of f.

Given a direction \mathbf{u} , we have $\frac{\partial f}{\partial u}(x_0, y_0) = \nabla f(x_0, y_0) \cdot \mathbf{u} = |\nabla f(x_0, y_0)| |\mathbf{u}| \cos \theta$, where θ is the angle between the vectors $\nabla f(x_0, y_0)$ and \mathbf{u} . The maximum value is achieved when $\cos \theta = 1$, which occurs when $\theta = 0$, so that \mathbf{u} is the direction of $\nabla f(x_0, y_0)$.

- (b) (10 points) Assume f has a local extreme value at (x_0, y_0) , then show that $\nabla f(x_0, y_0) = 0$. See the proof of Theorem 9.3 of Chapter 4 of the text. Although we haven't reached this section of the text the proof was covered in lecture.
- 4. (20 points) What is the equation of the tangent line to the curve of the intersection of the two surfaces

$$x^{2} + y^{2} - z = 8$$
, $x - y^{2} + z^{2} = -2$

at the point (2, -2, 0).

Using the method of Exercise 19 of page 194, the tangent vector is $(2x, 2y, -1) \times (1, -2y, 2z)$ evaluated at (2, -2, 0) which is $(4, -4, -1) \times (1, 4, 0) = (4, -1, 20)$. The equation of the tangent line is then (2, -2, 0) + t(4, -1, 20).

5. (20 points) Let $w = x^2 + y^2 + z^2$, and $\mathbf{x} = (x, y, z) = (s^2 + t^2 + u^2, stu, s^2 + t^2u)$. Find the total derivative of $w = f(\mathbf{x}(s, t, u))$.

We have $D_f(x,y,z) = (2x,2y,2z)$, and in matrix notation we have

$$D_{\mathbf{x}}(s,t,u) = \begin{pmatrix} 2s & 2t & 2u \\ tu & su & st \\ 2s & 2tu & t^2 \end{pmatrix}$$

Multiplying the two gives $(4sx + 2tuy + 4sz, 6tx + 2suy + 4tuz, 4ux + 2sty + 4t^2z)$; you can then evaluate at $(x, y, z) = (s^2 + t^2 + u^2, stu, s^2 + t^2u)$ to get the answer purely in terms of s, t, u.