
Math 32BH
Final Solutions
March 22, 2005

1. (20 points) Apply Stokes theorem to evaluate the surface integral∫ ∫
S

curl
−→
F · d

−→
S

where
−→
F = (3z, 5x,−2y) and S is part of the surface z = 2x2 + 2y2 below the plane z = 8 and whose

orientation is given by the upper unit normal vector.

Parameterize the boundary 8 = 2x2+2y2 as (2 cos t, 2 sin t, 8), and so a normal vector is (−2 sin t, 2 cos t, 0).
Note however that in order to get the correct answer with Stokes’ theorem you need to use a unit normal
vector, and so we must use (− sin t, cos t, 0). Everyone missed this fact (which is not emphasized properly
in the textbook), including me! Our unit normal vector points up as can be seen by evaluating it at

t = 0. Using Stokes’ theorem we get
∫ ∫

S
curl

−→
F · d

−→
S =

∫ 2π

0
(24, 10 cos t,−4 sin t) · (− sin t, cos t, 0) dt =∫ 2π

0
−24 sin t + 10 cos2 t dt = 10π.

2. (20 points) Compute the improper integral∫ ∫ ∫
R3

√
x2 + y2 + z2e−

√
x2+y2+z2

dV.

Paremeterizing R3 with spherical coordinates we get
∫ ∫ ∫

R3 e−
√

x2+y2+z2
dV =∫∞

0
ρ3e−ρ

∫ π

0
sinφ

∫ 2π

0
dθdφdρ = 24π.

3. (20 points) Compute the surface integral
∫

S

−→
F · d

−→
S where

−→
F (x, y, z) =

−→x
|−→x |3

with −→x = (x, y, z) and S is the surface

x2

22
+

y2

32
+

z2

42
= 1

with outward orientation.

This is Example 8.5 on page 485 of the text, with k = 1. The solution is 4π.
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4. (20 points)

(a) (10 points) Give a precise geometric description of each of the cylindrical coordinates of a point
P ∈ R3. Express each cylindrical coordinate in terms of the rectangular coordinates, noting any
conditions that might apply. Express each rectangular coordinate in terms of the cylindrical co-
ordinates, noting any conditions that might apply. Describe the restrictions you would place on
the cylindrical coordinates so that every point in R3 has at least one representation in cylindrical
coordinates, and as many points as possible have exactly one representation in cylindrical coor-
dinates. Describe precisely the set of points that has more than one representation under your
restrictions, and describe the set of all representations for each such point.
The cylindrical coordinates of P are (r, θ, z), where r (r ≥ 0) is the distance from P ′ (the projection
of P onto the xy-plane) to the origin, θ is the angle (θ ∈ [0, 2π)) that the line segment from the
origin to P ′ makes with the positive x-axis, and z is the distance of the point to the xy plane. We
have r =

√
x2 + y2, z = z, and θ = tan−1 y

x for x > 0 and y ≥ 0; θ = tan−1 y
x + 2π for x > 0 and

y < 0; and θ = tan−1 y
x + π for x < 0. If x = 0 then θ = π/2 if y > 0 and θ = 3π/2 if y < 0; it is

undefined if y = 0, see below. Conversely x = r cos θ, y = r sin θ, and z = z. The restrictions on r
and θ already mentioned ensure every point not on the z axis has exactly one cylindrical coordinate
tuple. Those points can be represented as (0, θ, z) for any θ ∈ [0, 2π).

(b) (10 points) Give a precise geometric description of each of the spherical coordinates of a point
P ∈ R3. Express each spherical coordinate in terms of the rectangular coordinates, noting any
conditions that might apply. Express each rectangular coordinate in terms of the spherical coor-
dinates, noting any conditions that might apply. Describe the restrictions you would place on the
spherical coordinates so that every point in R3 has at least one representation in spherical coor-
dinates, and as many points as possible have exactly one representation in spherical coordinates.
Describe precisely the set of points that has more than one representation under your restrictions,
and describe the set of all representations for each such point.
The spherical coordinates of P are (ρ, φ, θ), where ρ (ρ ≥ 0) is the distance from P to the origin, φ
(φ ∈ [0, π]) is the angle the line segment from the origin to P makes with the positive z axis, and θ
is the angle (θ ∈ [0, 2π)) that the line segment of the projection of P onto the xy plane makes with

the x-axis. We have ρ =
√

x2 + y2 + z2, φ = cos−1 z√
x2+y2+z2

(for (x, y, z) 6= (0, 0, 0); otherwise

undefined as noted below) and θ = tan−1 y
x for x > 0 and y ≥ 0; θ = tan−1 y

x + 2π for x > 0 and
y < 0; and θ = tan−1 y

x + π for x < 0. If x = 0 then θ = π/2 if y > 0 and θ = 3π/2 if y < 0;
it is undefined if y = 0, see below. Conversely x = ρ sinφ cos θ, y = ρ sinφ sin θ, and z = ρ cos φ.
The restrictions on ρ, φ and θ already mentioned ensure every point not on the z axis has exactly
one spherical coordinate tuple. All points on the positive z axis can be represented as (z, 0, θ) for any
θ ∈ [0, 2π). All points on the negative z axis can be represented as (−z, π, θ) for any θ ∈ [0, 2π). The
origin can be represented as (0, φ, θ) for any φ ∈ [0, π] and any θ ∈ [0, 2π).

5. (20 points) Find the surface area cut from the paraboloid z = x2 + y2 by the cylinder x2 + y2 ≤ 1.

Parameterize the surface S by (u cos v, u sin v, u2), where (u, v) ∈ [0, 1]× [0, 2π]. Then
Xu = (cos v, sin v, 2u) and Xv = (−u sin v, u cos v, 0). It follows Xu ×Xv = (−2u2 cos v,−2u2 sin v, u),
and |Xu ×Xv| = u

√
1 + 4u2. The area is thus

∫ 2π

0

∫ 1

0
u
√

1 + 4u2 du dv = π
6

(
5
√

5− 1
)
.

6. (20 points) Evaluate the integral
∫ ∫ ∫

C

√
x2 + y2 + z2dV where C is the ice cream cone

{(x, y, z)|x2 + y2 + z2 ≤ 1, x2 + y2 ≤ z2, z ≥ 0}.

This is similar to Example 8.7 in the text, except φ ∈ [0, π/4]. The result is thus∫ 2π

0

∫ π/4

0

∫ 1

0
ρ3 sinφdρ dφ dθ = π

2

(
1− 1√

2

)
.
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7. (20 points)

(1) If the function f(x, y, z) has continuous second order partial derivatives, show that curl(gradf) = 0

gradf = (∂f
∂x , ∂f

∂y , ∂f
∂z ), and so curl(gradf) = ( ∂2f

∂y∂z −
∂2f
∂z∂y , ∂2f

∂z∂x −
∂2f

∂x∂z , ∂2f
∂x∂y −

∂2f
∂y∂x ) = 0 by equality of

mixed partials.

(2) If
−→
F is a vector fields in R3 with continuous second order partial differentials, prove that

div(curl
−→
F ) = 0

A similar straightfoward calculation.

8. (20 points) Given a vector field

−→
F (x, y, z) = (y cosz − yzex, x cosz − zex,−xy sinz − yex).

Is it conservative? If so find a potential function f(x, y).

If ∂p
∂x = y cos z−yzex, then p(x, y, z) = xy cos z−yzex+f(y, z). where f is some function of y and z alone.

So if ∂p
∂y = x cos z − zex + ∂f(y,z)

∂y = x cos z − zex, then f(y, z) = g(z), where g is a function of z alone.

A similar argument shows g(z) = C, where C is a constant. It follows p(x, y, z) = xy cos z − yzex + C.

9. (20 points) Let S be the surface of the solid cylinder T bounded by z = 0, z = 4 and x2 + y2 = 4.
Calculate the outward flux ∫ ∫

S

−→
F · d

−→
S ,

where −→
F = ((x2 + y2 + z2)x, (x2 + y2 + z2)y, (x2 + y2 + z2)z)

First calculate div(
−→
F ) = 5(x2 + y2 + z2). Then use Gauss’s Theorem and cylindrical coordinates to get∫ ∫

S

−→
F · d

−→
S =

∫ 2π

0

∫ 4

0

∫ 2

0
5r(r2 + z2) dr dz dθ = 1760π
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10. (20 points)

(1) Let A be the area of the region bounded by a piecewise smooth simple closed curve C, show that

A =
∮

C

xdy,

where C is oriented counter-clockwise.

Call the region D, then A =
∫∫

D
dA =

∮
C

xdy by Green’s Theorem, where Q(x, y) = x and P (x, y) = 0.

(2) Calculate the area of the region bounded by the ellipse

x2

a2
+

y2

b2
= 1.

Parameterize the ellipse by x = a cos t, y = b sin t. Then dy = b cos t dt. Using part (a) we have

A = ab
∫ 2π

0
cos2t dt = abπ.
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