
Math 32BH
Homework 1 Solutions

I graded 4 of the problems:
Page 238: 6, 15;
Page 245: nothing!;
Page 254: 16, 28.
The following are solutions to the homework problems and additional comments for the problems I graded.
Note that solutions are often brief; if you need more detail please ask in section or office hours. I may well
have made errors in my solutions so please let me know if I did. For grading information see my class
webpage.

General Comments
The maximum number of points was 12. The high score was 12, the median was 9.7, and the mean was 10.
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2.
∫∫

R
ex+y dA =

(∫ 1

0
ex dx

) (∫ 2

0
ey dy

)
= (e− 1)(e2 − 1).

6.
∫∫

R
(sec2 x sin y − sin y) dA =

(∫ π/4

0
(sec2 x− 1) dx

) (∫ π/3

π/6
sin y dy

)
=(

(tanx− x)|π/4
0

) (
− cos y|π/3

π/6

)
= (1− π

4 )
√

3−1
2 .

12.
∫∫

R
y lnxy dA =

(∫ 2

1
lnx dx

) (∫ 3

2
y dy

)
+

(∫ 2

1
dx

) (∫ 3

2
y ln y dy

)
=

(2 ln 2− 1)(5/2) + 9
2 ln 3− 9

4 − 2 ln 2 + 1.

13. If f(x, y) ≥ 0 for all (x, y) ∈ R, then R(f,G, z) ≥ 0 for all G and z, and therefore
lim|G|→0 R(f,G, z) ≥ 0 as well, which gives the result.

14. Apply exercise 13 to the function (g − f)(x, y) = g(x, y)− f(x, y) and use linearity.

15. Let g(x, y) = M for all x, y; then exercise 14 gives
∫∫

R
f(x, y) dA ≤

∫∫
R

M dA = MA(R); the other
inequality is similar.

18. Both the rational and irrational points are dense in [0, 1], which means that no matter how small an
interval we pick we can find both a rational and an irrational number in it. It follows
lim inf |G|→0 R(f,G, z) ≤ 1 while lim sup|G|→0 R(f,G, z) = 2, and therefore the limit cannot exist.

22. Note that f must be assumed to be integrable (otherwise we could come up with an counterexample
similar to exercise 18). If we use a uniform grid G that is symmetric about the y axis then we can
always pick our points in each pair of symmetric subrectangles to be (x, y) and (−x, y). Then the
corresponding terms in the Riemann sum will cancel, and so the integral is 0.
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2.
∫ 4

1

∫ 2

−1
(x2 − 3x + 2y) dx dy =

∫ 4

1
(− 3

2 + 6y) dy = 81
2 .

8.
∫ π/2

0

∫ π/2

0
cos(x + y) dx dy =

∫ π/2

0
(sin(y + π/2)− sin(y)) = 2.

12.
∫ 2

1

∫ 2

0
1

x+y dy dx =
∫ 2

1
(ln(x + 2)− ln(x)) dx = 4 ln 4− 3 ln 3− 2 ln 2.

14.
∫ 1

0

∫ 2

0
16− x2 − y2 dx dy =

∫ 1

0
32− 8

3 − 2y2 dy = 32− 10
3 .

18.
∫ 2

1

∫ 1

0
yexy dx dy =

∫ 2

1
(ey − 1) dy = e2 − e− 1.

19. Part (a) follows directly from Fubini’s Theorem. In (b), the approximation for I follows by plugging
the approximation for g(y) into the definition of I and applying the trapezoidal rule.

20. The exact value is 7
6 ≈ 1.17. Working out the approximate value is tedious and I haven’t done it yet.

There are 16 squares to sum over.
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2.
∫ 1

0

∫ 3x

0
(2− 3x + xy) dy dx =

∫ 1

0
(6x− 9x2 + 9

2x3) dx = 9
8 .

4.
∫ 1

−1

∫ 1

y2(x− y2) dx dy =
∫ 1

−1
( 1
2 − y2 + y4

2 ) dy = 28
15 .

10. The function is symmetric in all four quadrants of the xy-plane, and so it suffices to evaluate
4

∫ 1

0

∫ 1−x

0
(1 + x2 + y2) dy dx = 4

∫ 1

0
(1− 2x− 2x2 − 4

3x3) dx = 4
3 .

14.
∫ 1

0

∫ y2

y4 dx dy =
∫ 1

0
(y2 − y4) dy = 2

15 .

16. By symmetry it suffices to evaluate

2
∫ 1

1/2

∫√1−y2

0
dx dy = 2

∫ 1

1/2

√
1− y2 dy = (θ + 1

2 sin 2θ)
∣∣π/2

π/6
= π

3 −
√

3
4 .

20.
∫ 1

0

∫ 2

0
(2− x

2 −
y
2 ) dy dx =

∫ 1

0
(3− x) dx = 5

2 .

24.
∫ 1

0

∫ x

x3 xy dy dx =
∫ 1

0
1
2 (x3 − x7) dx = 1

16 .

28.
∫ 2

0

∫ y/2

0

√
4− y2 dx dy =

∫ 2

0
y
2

√
4− y2 dy = 4

3 .

30. The integral equals
∫√2

0

∫ 2√
y
f(x, y) dx dy.

34. The integral equals
∫ 4

1

∫√x

x−2
f(x, y) dy dx +

∫ 1

0

∫√x

−
√

x
f(x, y) dy dx.
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