Math 32BH Midterm 2 Solutions Feb 28, 2005

1. (25 points) Compute the improper integral

$$\int_{\mathbb{R}} x^2 e^{-x^2} dx$$

(Show detailed work to get full credit.)

Use integration by parts. Let u = x, du = dx, $dv = xe^{-x^2}dx$, $v = -\frac{1}{2}e^{-x^2}$. Then $\int_{\mathbb{R}} x^2 e^{-x^2}dx = \frac{1}{2}\int_{\mathbb{R}} e^{-x^2}dx = \frac{\sqrt{\pi}}{2}$ by the trick shown in class.

2. (25 points) Compute the line integral $\int_{\gamma} \overrightarrow{F} \cdot d\overrightarrow{x}$ where

$$\overrightarrow{F} = (-\frac{y}{x^2+y^2}, \frac{x}{x^2+y^2})$$

and γ is the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ oriented counterclockwise. (Show detailed work to get full credit.) $\int_{\gamma} \overrightarrow{F} \cdot d\overrightarrow{x} = 2\pi$. See example 2.7 in the text for the details.

3. (25 points) Compute $div(\vec{F})$ where $\vec{F} = \frac{\vec{x}}{|\vec{x}|^3}$ is a vector function from \mathbb{R}^3 to \mathbb{R}^3 . By calculation $div(\vec{F}) = 0$.

4. (1). (15 points) Let $\overrightarrow{F} = (6xy - y^3, 4y + 3x^2 - 3xy^2)$. Determine whether \overrightarrow{F} is conservative on \mathbb{R}^3 . If it is, please find a potential function.

If $\frac{\partial p}{\partial x} = 6xy - y^3$, then $p(x, y) = 3x^2y - xy^3 + f(y)$, where f is some function of y alone. So if $\frac{\partial p}{\partial y} = 3x^2 - 3xy^2 + \frac{df}{dy} = 4y + 3x^2 - 3xy^2$, then $f(y) = 2y^2 + C$, where C is a constant. It follows $p(x, y) = 3x^2y - xy^3 + 2y^2 + C$.

(2). (10 points). Compute the line integral of the above vector field along the unit circle from (1,0) to (0,1).

The integral evaluates to p(0,1) - p(1,0) = 2.